organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzaldehyde thiosemicarbazone

Lingqian Kong,* Yan Qiao, Ji-Dong Zhang and Xiu-Ping Ju

Dongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China

Correspondence e-mail: konglingqian08@163.com

Received 5 October 2008; accepted 17 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.058; wR factor = 0.162; data-to-parameter ratio = 14.4.

The title compound, $C_8H_9N_3S$, contains two molecules in the asymmetric unit. One molecule is close to being planar (r.m.s. deviation from the mean plane = 0.06 Å for the non-H atoms), while the other exhibits a dihedral angle of 21.7 (1)° between the benzene ring and the mean plane of the thiosemicarbazone unit. Intermolecular $N-H\cdots S$ hydrogen bonds link the molecules into layers parallel to the (010) plane.

Related literature

For background literature concerning arylhydrazone compounds, see: Beraldo & Gambino (2004); Bondock *et al.* (2007). For the related 2,4-dichlorobenzylidene compound, see: Jing *et al.* (2006).

Experimental

Crystal data

$C_8H_9N_3S$	c = 13.519 (2) Å
$M_r = 179.24$	$\alpha = 112.735 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 95.384 \ (2)^{\circ}$
$a = 5.8692 (13) \text{\AA}$	$\gamma = 96.153 \ (2)^{\circ}$
b = 12.513 (2) Å	V = 900.4 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	4740 measured reflections
diffractometer	3124 independent reflections
Absorption correction: multi-scan	1846 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.039$
$T_{\min} = 0.930, \ T_{\max} = 0.970$	

T = 298 (2) K

 $0.24 \times 0.13 \times 0.10 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 217 parameters $wR(F^2) = 0.162$ H-atom parameters constrainedS = 0.95 $\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$ 3124 reflections $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	D-H	$\cdots A$
$N2-H2\cdot\cdot\cdot S1^{i}$	0.86	2.64	3.443 (3)	155	
$N3-H3A\cdots S1^{ii}$	0.86	2.98	3.488 (3)	120	
$N5-H5\cdots S1^{ii}$	0.86	2.61	3.441 (3)	162	
$N6-H6B\cdots S2^{iii}$	0.86	2.51	3.368 (3)	173	
Symmetry codes: -x+2, -y+2, -z+2	(i) - <i>x</i>	+3, -y + 2, -z	+2; (ii)	x - 1, y, z;	(iii)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. DCLG2008002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2310).

References

- Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.
- Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948– 954.
- Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489-04490.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2008). E64, o2412 [doi:10.1107/S1600536808038270]

Benzaldehyde thiosemicarbazone

L. Kong, Y. Qiao, J.-D. Zhang and X.-P. Ju

Comment

Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, often exhibit strong biological activity and are important compounds for drug design (Beraldo & Gambino, 2004), organocatalysis and the preparation of heterocyclic rings (Bondock *et al.*, 2007).

Experimental

Benzaldehyde (0.3 mmol), thiosemicarbazide (0.3 mmol) and 10 ml water were mixed in a 50 ml flask. After stirring for 30 min at 373 K, the resulting mixture was recrystallized from ethanol, affording the title compound as colourless crystals. Elemental analysis: calculated C 53.61, H 5.06, N 23.44%; found: C 53.58, H 5.55, N 23.51%.

Refinement

H atoms were placed in geometrically idealized positions (N—H = 0.86, C—H = 0.93 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Figures

Fig. 1. Two molecules in the asymmetric unit of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.

Benzaldehyde thiosemicarbazone

Crystal data	
C ₈ H ₉ N ₃ S	Z = 4
$M_r = 179.24$	$F_{000} = 376$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.322 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.8692 (13) Å	Cell parameters from 1310 reflections

supplementary materials

<i>b</i> = 12.513 (2) Å
c = 13.519 (2) Å
$\alpha = 112.735 \ (3)^{\circ}$
$\beta = 95.384 \ (2)^{\circ}$
$\gamma = 96.153 \ (2)^{\circ}$
$V = 900.4 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	3124 independent reflections
Radiation source: fine-focus sealed tube	1846 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.930, T_{\max} = 0.970$	$k = -12 \rightarrow 14$
4740 measured reflections	$l = -16 \rightarrow 14$

 $\theta = 2.9-25.0^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 298 (2) KBlock, orange

 $0.24\times0.13\times0.10~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.162$	$w = 1/[\sigma^2(F_o^2) + (0.0856P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{\rm max} < 0.001$
3124 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.9674 (5)	0.8260 (3)	0.9684 (2)	0.0484 (8)
N2	1.1667 (5)	0.8822 (3)	0.9512 (2)	0.0504 (8)
H2	1.2934	0.8999	0.9956	0.061*
N3	0.9536 (5)	0.8863 (3)	0.8034 (2)	0.0550 (9)
НЗА	0.8331	0.8563	0.8208	0.066*
H3B	0.9414	0.9020	0.7467	0.066*
N4	0.3374 (5)	0.7659 (3)	0.4823 (2)	0.0486 (8)
N5	0.4649 (5)	0.8653 (3)	0.5625 (2)	0.0518 (8)
Н5	0.4200	0.8950	0.6249	0.062*
N6	0.7036 (6)	0.8737 (3)	0.4423 (3)	0.0612 (10)
H6A	0.6092	0.8166	0.3930	0.073*
H6B	0.8262	0.9031	0.4259	0.073*
S1	1.40293 (17)	0.96409 (10)	0.83250 (8)	0.0561 (3)
S2	0.83277 (19)	1.02721 (9)	0.64490 (8)	0.0610 (4)
C1	0.9813 (7)	0.8063 (3)	1.0543 (3)	0.0500 (9)
H1	1.1169	0.8341	1.1040	0.060*
C2	0.7837 (7)	0.7398 (3)	1.0749 (3)	0.0493 (10)
C3	0.5747 (7)	0.7039 (3)	1.0076 (3)	0.0569 (10)
Н3	0.5566	0.7229	0.9475	0.068*
C4	0.3920 (8)	0.6403 (4)	1.0277 (4)	0.0660 (12)
H4	0.2516	0.6167	0.9814	0.079*
C5	0.4178 (9)	0.6118 (4)	1.1169 (4)	0.0700 (13)
H5A	0.2950	0.5690	1.1309	0.084*
C6	0.6255 (9)	0.6472 (4)	1.1845 (4)	0.0675 (12)
H6	0.6431	0.6283	1.2447	0.081*
C7	0.8081 (8)	0.7104 (3)	1.1640 (3)	0.0584 (11)
H7	0.9486	0.7336	1.2100	0.070*
C8	1.1574 (6)	0.9084 (3)	0.8637 (3)	0.0438 (9)
C9	0.1484 (7)	0.7251 (3)	0.5034 (3)	0.0484 (9)
H9	0.0969	0.7658	0.5687	0.058*
C10	0.0129 (6)	0.6152 (3)	0.4263 (3)	0.0455 (9)
C11	-0.2018 (7)	0.5775 (4)	0.4462 (4)	0.0607 (11)
H11	-0.2622	0.6246	0.5065	0.073*
C12	-0.3267 (8)	0.4700 (4)	0.3766 (4)	0.0695 (13)
H12	-0.4716	0.4453	0.3898	0.083*
C13	-0.2378 (9)	0.4002 (4)	0.2889 (4)	0.0736 (13)
H13	-0.3205	0.3270	0.2435	0.088*
C14	-0.0287 (9)	0.4368 (4)	0.2671 (4)	0.0730 (13)
H14	0.0287	0.3893	0.2060	0.088*
C15	0.0981 (7)	0.5436 (3)	0.3350 (3)	0.0576 (11)
H15	0.2410	0.5680	0.3198	0.069*
C16	0.6604 (6)	0.9162 (3)	0.5434 (3)	0.0443 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0460 (19)	0.0479 (18)	0.0522 (19)	0.0088 (15)	0.0119 (15)	0.0195 (15)
N2	0.0434 (18)	0.056 (2)	0.0511 (19)	0.0056 (15)	0.0037 (15)	0.0225 (16)
N3	0.0415 (19)	0.072 (2)	0.0521 (19)	-0.0021 (16)	0.0018 (16)	0.0296 (17)
N4	0.0452 (19)	0.0479 (18)	0.0471 (18)	-0.0024 (15)	0.0008 (15)	0.0170 (15)
N5	0.048 (2)	0.0513 (19)	0.0488 (19)	-0.0080 (15)	0.0049 (15)	0.0170 (15)
N6	0.055 (2)	0.063 (2)	0.055 (2)	-0.0165 (17)	0.0107 (17)	0.0171 (17)
S 1	0.0434 (6)	0.0700 (7)	0.0494 (6)	0.0008 (5)	0.0081 (5)	0.0196 (5)
S2	0.0595 (7)	0.0634 (7)	0.0504 (6)	-0.0189 (5)	-0.0037 (5)	0.0224 (5)
C1	0.054 (2)	0.046 (2)	0.049 (2)	0.0123 (19)	0.0080 (19)	0.0165 (18)
C2	0.060 (3)	0.039 (2)	0.047 (2)	0.0102 (19)	0.014 (2)	0.0133 (17)
C3	0.058 (3)	0.057 (3)	0.056 (2)	0.012 (2)	0.004 (2)	0.023 (2)
C4	0.054 (3)	0.060 (3)	0.082 (3)	0.013 (2)	0.011 (2)	0.024 (2)
C5	0.078 (3)	0.053 (3)	0.083 (3)	0.010 (2)	0.033 (3)	0.028 (2)
C6	0.088 (4)	0.058 (3)	0.060 (3)	0.011 (3)	0.021 (3)	0.026 (2)
C7	0.071 (3)	0.048 (2)	0.050 (2)	0.004 (2)	0.006 (2)	0.0163 (19)
C8	0.044 (2)	0.043 (2)	0.040 (2)	0.0094 (17)	0.0079 (18)	0.0112 (17)
С9	0.044 (2)	0.050 (2)	0.051 (2)	0.0031 (18)	0.0108 (18)	0.0215 (18)
C10	0.039 (2)	0.044 (2)	0.054 (2)	0.0005 (16)	0.0022 (17)	0.0224 (18)
C11	0.049 (2)	0.062 (3)	0.074 (3)	-0.001 (2)	0.013 (2)	0.032 (2)
C12	0.047 (3)	0.070 (3)	0.094 (4)	-0.012 (2)	-0.001 (2)	0.043 (3)
C13	0.078 (3)	0.048 (3)	0.081 (3)	-0.012 (2)	-0.015 (3)	0.022 (2)
C14	0.078 (3)	0.062 (3)	0.066 (3)	0.002 (3)	0.005 (3)	0.015 (2)
C15	0.052 (2)	0.053 (2)	0.063 (3)	0.000 (2)	0.007 (2)	0.020 (2)
C16	0.044 (2)	0.044 (2)	0.048 (2)	-0.0003 (17)	0.0004 (18)	0.0248 (18)
Geometric p	arameters (Å, °)					
N1-C1		1.274 (5)	C3—	H3	0.93	30
N1—N2		1.385 (4)	C4—	C5	1.38	84 (6)
N2—C8		1.342 (5)	C4—	H4	0.92	30

N2-Co	1.342 (3)	С4—п4	0.950
N2—H2	0.860	C5—C6	1.371 (7)
N3—C8	1.320 (5)	С5—Н5А	0.930
N3—H3A	0.860	C6—C7	1.377 (6)
N3—H3B	0.860	С6—Н6	0.930
N4—C9	1.274 (5)	С7—Н7	0.930
N4—N5	1.375 (4)	C9—C10	1.453 (5)
N5—C16	1.347 (4)	С9—Н9	0.930
N5—H5	0.860	C10-C11	1.385 (5)
N6—C16	1.321 (4)	C10—C15	1.390 (5)
N6—H6A	0.860	C11—C12	1.383 (6)
N6—H6B	0.860	C11—H11	0.930
S1—C8	1.693 (4)	C12—C13	1.362 (6)
S2—C16	1.674 (4)	C12—H12	0.930
C1—C2	1.466 (5)	C13—C14	1.362 (6)
C1—H1	0.930	С13—Н13	0.930

C2—C3	1.375 (5)	C14—C15	1.376 (6)
C2—C7	1.388 (5)	C14—H14	0.930
C3—C4	1.377 (6)	С15—Н15	0.930
C1—N1—N2	116.5 (3)	С7—С6—Н6	119.8
C8—N2—N1	118.4 (3)	C6—C7—C2	120.4 (4)
C8—N2—H2	120.8	С6—С7—Н7	119.8
N1—N2—H2	120.8	С2—С7—Н7	119.8
C8—N3—H3A	120.0	N3—C8—N2	117.6 (3)
C8—N3—H3B	120.0	N3—C8—S1	122.5 (3)
H3A—N3—H3B	120.0	N2—C8—S1	119.9 (3)
C9—N4—N5	117.1 (3)	N4—C9—C10	120.4 (4)
C16—N5—N4	120.0 (3)	N4—C9—H9	119.8
C16—N5—H5	120.0	С10—С9—Н9	119.8
N4—N5—H5	120.0	C11-C10-C15	118.8 (4)
C16—N6—H6A	120.0	$C_{11} - C_{10} - C_{9}$	1196(4)
C16—N6—H6B	120.0	C15-C10-C9	121.6 (3)
H6A—N6—H6B	120.0	C12 - C11 - C10	1201(4)
N1-C1-C2	120.0 (4)	C12—C11—H11	119.9
N1_C1_H1	120.0	C10-C11-H11	119.9
C^2 — C^1 — H^1	120.0	C_{13} C_{12} C_{11}	120 1 (4)
C_{2}^{3} C_{2}^{2} C_{7}^{7}	120.0	C_{13} C_{12} H_{12}	120.1 (4)
$C_{3}^{2} - C_{1}^{2}$	121 9 (4)	C11_C12_H12	119.9
C_{7} C_{2} C_{1}	121.9(4) 1103(4)	C14 - C13 - C12	119.9 120 5 (4)
$C_{1} = C_{2} = C_{1}$	119.3(4) 121.0(4)	$C_{14} = C_{13} = C_{12}$	120.3 (4)
$C_2 = C_3 = C_4$	121.0 (4)	$C_{14} = C_{13} = 1113$	119.8
$C_2 = C_3 = H_3$	119.5	C_{12} C_{13} C_{14} C_{15}	119.0
$C_4 = C_5 = H_5$	119.3	$C_{13} - C_{14} - C_{13}$	120.4 (3)
$C_3 = C_4 = C_3$	119.8 (5)	C15-C14-H14	119.8
C3-C4-H4	120.1	C13-C14-H14	119.8
C5-C4-H4	120.1	C14 - C15 - C10	120.1 (4)
C6-C5-C4	119.7 (4)	C14—C15—H15	119.9
C6—C5—H5A	120.2	С10—С15—Н15	119.9
C4—C5—H5A	120.2	N6-C16-N5	116.4 (3)
C5—C6—C7	120.4 (4)	N6—C16—S2	123.6 (3)
С5—С6—Н6	119.8	N5—C16—S2	120.0 (3)
C1—N1—N2—C8	-177.7 (3)	N1—N2—C8—S1	-173.6 (2)
C9—N4—N5—C16	-176.7 (3)	N5—N4—C9—C10	-175.1 (3)
N2—N1—C1—C2	-175.6 (3)	N4—C9—C10—C11	-174.2 (4)
N1—C1—C2—C3	-4.5 (6)	N4—C9—C10—C15	8.9 (6)
N1—C1—C2—C7	174.5 (4)	C15-C10-C11-C12	0.6 (6)
C7—C2—C3—C4	0.2 (6)	C9—C10—C11—C12	-176.4 (4)
C1—C2—C3—C4	179.3 (4)	C10-C11-C12-C13	0.8 (7)
C2—C3—C4—C5	0.0 (6)	C11-C12-C13-C14	-1.9 (7)
C3—C4—C5—C6	0.0 (6)	C12-C13-C14-C15	1.7 (7)
C4—C5—C6—C7	-0.2 (7)	C13-C14-C15-C10	-0.2 (7)
C5—C6—C7—C2	0.4 (6)	C11-C10-C15-C14	-0.9 (6)
C3—C2—C7—C6	-0.4 (6)	C9-C10-C15-C14	176.0 (4)
C1—C2—C7—C6	-179.5 (3)	N4—N5—C16—N6	7.6 (5)
N1—N2—C8—N3	4.7 (5)	N4—N5—C16—S2	-172.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2— $H2$ ···S1 ⁱ	0.86	2.64	3.443 (3)	155
N3—H3A····S1 ⁱⁱ	0.86	2.98	3.488 (3)	120
N5—H5····S1 ⁱⁱ	0.86	2.61	3.441 (3)	162
N6—H6B···S2 ⁱⁱⁱ	0.86	2.51	3.368 (3)	173
Symmetry codes: (i) $-x+3$, $-y+2$, $-z+2$; (ii)) x-1, y, z; (iii) -x+2, -y+	+2, -z+1.		

Fig. 1

